Course Contents:
Axiomatic definitions of probability; conditional probability, independence and Bayes theorem, continuity property of probabilities, Borel-Cantelli Lemma; random variable: probability distribution, density and mass functions, functions of a random variable; expectation, characteristic and moment-generating functions; Chebyshev, Markov and Chernoff bounds; jointly distributed random variables: joint distribution and density functions, joint moments, conditional distributions and expectations, functions of random variables; random vector- mean vector and covariance matrix, Gaussian random vectors; sequence of random variables: almost sure and mean-square convergences, convergences in probability and in distribution, laws of large numbers, central limit theorem; random process: probabilistic structure of a random process; mean, autocorrelation and autocovariance functions; stationarity - strict- sense stationary and wide-sense stationary (WSS) processes: time averages and ergodicity; spectral representation of a real WSS process-power spectral density, cross-power spectral density, linear time-invariant systems with WSS process as an input- time and frequency domain analyses; examples of random processes: white noise, Gaussian, Poisson and Markov processes.
Texts / References: